BIROn - Birkbeck Institutional Research Online

    Biologically inspired tensor features

    Mu, Y. and Tao, D. and Li, Xuelong and Murtagh, F. (2009) Biologically inspired tensor features. Cognitive Computation 1 (4), pp. 327-341. ISSN 1866-9956.

    Full text not available from this repository.

    Abstract

    According to the research results reported in the past decades, it is well acknowledged that face recognition is not a trivial task. With the development of electronic devices, we are gradually revealing the secret of object recognition in the primate’s visual cortex. Therefore, it is time to reconsider face recognition by using biologically inspired features. In this paper, we represent face images by utilizing the C1 units, which correspond to complex cells in the visual cortex, and pool over S1 units by using a maximum operation to reserve only the maximum response of each local area of S1 units. The new representation is termed C1 Face. Because C1 Face is naturally a third-order tensor (or a three dimensional array), we propose three-way discriminative locality alignment (TWDLA), an extension of the discriminative locality alignment, which is a top-level discriminate manifold learning-based subspace learning algorithm. TWDLA has the following advantages: (1) it takes third-order tensors as input directly so the structure information can be well preserved; (2) it models the local geometry over every modality of the input tensors so the spatial relations of input tensors within a class can be preserved; (3) it maximizes the margin between a tensor and tensors from other classes over each modality so it performs well for recognition tasks and (4) it has no under sampling problem. Extensive experiments on YALE and FERET datasets show (1) the proposed C1Face representation can better represent face images than raw pixels and (2) TWDLA can duly preserve both the local geometry and the discriminative information over every modality for recognition.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): biologically inspired features, c1 units, manifold learning, discriminative locality alignment, face recognition
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences
    Depositing User: Sarah Hall
    Date Deposited: 11 Jul 2013 10:05
    Last Modified: 09 Aug 2023 12:33
    URI: https://eprints.bbk.ac.uk/id/eprint/7633

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    204Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item
    Edit/View Item