Li, J. and Li, Xuelong and Tao, D. (2008) KPCA for semantic object extraction in images. Pattern Recognition 41 (10), pp. 3244-3250. ISSN 0031-3203.
Abstract
In this paper, we kernelize conventional clustering algorithms from a novel point of view. Based on the fully mathematical proof, we first demonstrate that kernel KMeans (KKMeans) is equivalent to kernel principal component analysis (KPCA) prior to the conventional KMeans algorithm. By using KPCA as a preprocessing step, we also generalize Gaussian mixture model (GMM) to its kernel version, the kernel GMM (KGMM). Consequently, conventional clustering algorithms can be easily kernelized in the linear feature space instead of a nonlinear one. To evaluate the newly established KKMeans and KGMM algorithms, we utilized them to the problem of semantic object extraction (segmentation) of color images. Based on a series of experiments carried out on a set of color images, we indicate that both KKMeans and KGMM can offer more elaborate output than the conventional KMeans and GMM, respectively.
Metadata
Item Type: | Article |
---|---|
Keyword(s) / Subject(s): | segmentation, KPCA, kmeans, kernel kmeans, GMM, kernel GMM |
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Sarah Hall |
Date Deposited: | 12 Jul 2013 15:40 |
Last Modified: | 09 Aug 2023 12:33 |
URI: | https://eprints.bbk.ac.uk/id/eprint/7701 |
Statistics
Additional statistics are available via IRStats2.