Chun, C. and Chun, D. and Moss, T. and Noble, Steven (2018) The e-Exchange Basis Graph and Matroid connectedness. Discrete Mathematics 342 (3), pp. 723-725. ISSN 0012-365X.
|
Text
Basis_Graph_12.pdf - Author's Accepted Manuscript Available under License Creative Commons Attribution Non-commercial No Derivatives. Download (224kB) | Preview |
Abstract
Let M be a matroid and e ∈ E ( M ). The e -exchange basis graph of M has vertices labeled by bases of M , and two vertices are adjacent when the bases labeling them have symmetric difference { e, x } for some x ∈ E ( M ). In this paper we show that a connected matroid is exactly a matroid with the property that for every element e ∈ E ( M ), the e -exchange basis graph is connected.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Computing and Mathematical Sciences |
Depositing User: | Steven Noble |
Date Deposited: | 02 Nov 2018 13:40 |
Last Modified: | 09 Aug 2023 12:45 |
URI: | https://eprints.bbk.ac.uk/id/eprint/24903 |
Statistics
Additional statistics are available via IRStats2.