Bei, H. and Wang, Q. and Wang, Y. and Wang, W. and Murcio Villanueva, Roberto (2023) Optimal reinsurance–investment strategy based on stochastic volatility and the Stochastic Interest Rate Model. Axioms , ISSN 2075-1680.
|
Text
axioms-12-00736-v2.pdf - Published Version of Record Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
This paper studies insurance companies’ optimal reinsurance–investment strategy under the stochastic interest rate and stochastic volatility model, taking the HARA utility function as the optimal criterion. It uses arithmetic Brownian motion as a diffusion approximation of the insurer’s surplus process and the variance premium principle to calculate premiums. In this paper, we assume that insurance companies can invest in risk-free assets, risky assets, and zero-coupon bonds, where the Cox–Ingersoll–Ross model describes the dynamic change in stochastic interest rates and the Heston model describes the price process of risky assets. The analytic solution of the optimal reinsurance–investment strategy is deduced by employing related methods from the stochastic optimal control theory, the stochastic analysis theory, and the dynamic programming principle. Finally, the influence of model parameters on the optimal reinsurance–investment strategy is illustrated using numerical examples.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Humanities and Social Sciences > School of Social Sciences |
Depositing User: | Roberto Murcio Villanueva |
Date Deposited: | 09 Oct 2023 15:32 |
Last Modified: | 10 Oct 2023 14:15 |
URI: | https://eprints.bbk.ac.uk/id/eprint/52172 |
Statistics
Additional statistics are available via IRStats2.